jar

com.github.gwr3n : syat-choco

Maven & Gradle

Jan 08, 2018
4 stars

syat-choco · syāt is a suite of declarative modelling tools for statistical analysis. Global constraints and modeling tools covered in this library have been originally introduced in Rossi et al., "Declarative Statistics", 2017 (https://arxiv.org/abs/1708.01829).

Table Of Contents

Latest Version

Download com.github.gwr3n : syat-choco JAR file - Latest Versions:

All Versions

Download com.github.gwr3n : syat-choco JAR file - All Versions:

Version Vulnerabilities Size Updated
1.0.x

View Java Class Source Code in JAR file

  1. Download JD-GUI to open JAR file and explore Java source code file (.class .java)
  2. Click menu "File → Open File..." or just drag-and-drop the JAR file in the JD-GUI window syat-choco-1.0.0.jar file.
    Once you open a JAR file, all the java classes in the JAR file will be displayed.

org.chocosolver.solver.constraints.statistical.t

├─ org.chocosolver.solver.constraints.statistical.t.tStatistic.class - [JAR]

org.chocosolver.samples.statistical.kolmogorovsmirnov

├─ org.chocosolver.samples.statistical.kolmogorovsmirnov.IncompleteGermanTankProblem.class - [JAR]

├─ org.chocosolver.samples.statistical.kolmogorovsmirnov.InspectionSchedulingSatisfaction.class - [JAR]

org.chocosolver.solver.constraints.nary.matrix

├─ org.chocosolver.solver.constraints.nary.matrix.DotProduct.class - [JAR]

├─ org.chocosolver.solver.constraints.nary.matrix.Eigendecomposition.class - [JAR]

├─ org.chocosolver.solver.constraints.nary.matrix.MatrixInversion.class - [JAR]

org.chocosolver.solver.constraints.nary.deviation

├─ org.chocosolver.solver.constraints.nary.deviation.Covariance.class - [JAR]

├─ org.chocosolver.solver.constraints.nary.deviation.PooledStandardDeviation.class - [JAR]

├─ org.chocosolver.solver.constraints.nary.deviation.PooledVariance.class - [JAR]

├─ org.chocosolver.solver.constraints.nary.deviation.StandardDeviation.class - [JAR]

├─ org.chocosolver.solver.constraints.nary.deviation.StandardError.class - [JAR]

├─ org.chocosolver.solver.constraints.nary.deviation.Variance.class - [JAR]

org.chocosolver.samples.statistical.modelfit.linear.poisson

├─ org.chocosolver.samples.statistical.modelfit.linear.poisson.TwoLinearModelsFitPoisson.class - [JAR]

org.chocosolver.samples.statistical.anova

├─ org.chocosolver.samples.statistical.anova.ANOVA.class - [JAR]

org.chocosolver.solver.constraints.nary.mean

├─ org.chocosolver.solver.constraints.nary.mean.Mean.class - [JAR]

org.chocosolver.solver.constraints.statistical.hotelling

├─ org.chocosolver.solver.constraints.statistical.hotelling.tSquareStatistic.class - [JAR]

org.syat.statistics

├─ org.syat.statistics.BinomialProportion.class - [JAR]

├─ org.syat.statistics.KolmogorovSmirnovTest.class - [JAR]

├─ org.syat.statistics.KolmogorovSmirnovTestTwoSamples.class - [JAR]

├─ org.syat.statistics.MultinomialProportion.class - [JAR]

├─ org.syat.statistics.PearsonChiSquaredTest.class - [JAR]

├─ org.syat.statistics.TTest.class - [JAR]

├─ org.syat.statistics.TTestTwoSamples.class - [JAR]

├─ org.syat.statistics.UniformDistUB.class - [JAR]

├─ org.syat.statistics.tSquareTest.class - [JAR]

org.chocosolver.solver.constraints.nary.contingency

├─ org.chocosolver.solver.constraints.nary.contingency.ContingencyDecompositions.class - [JAR]

org.chocosolver.solver.constraints.statistical.chisquare

├─ org.chocosolver.solver.constraints.statistical.chisquare.ChiSquareFitEmpirical.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.chisquare.ChiSquareFitNormal.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.chisquare.ChiSquareFitPoisson.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.chisquare.ChiSquareIndependence.class - [JAR]

org.chocosolver.samples.statistical.modelfit.linear.normal

├─ org.chocosolver.samples.statistical.modelfit.linear.normal.LinearModelFitNormal.class - [JAR]

├─ org.chocosolver.samples.statistical.modelfit.linear.normal.LinearModelFitNormalCI.class - [JAR]

├─ org.chocosolver.samples.statistical.modelfit.linear.normal.LinearModelFitNormalCIBatch.class - [JAR]

org.chocosolver.solver.constraints.nary.bincounts

├─ org.chocosolver.solver.constraints.nary.bincounts.BincountsDecompositionType.class - [JAR]

├─ org.chocosolver.solver.constraints.nary.bincounts.BincountsDecompositions.class - [JAR]

org.chocosolver.samples.statistical.t

├─ org.chocosolver.samples.statistical.t.TTest.class - [JAR]

├─ org.chocosolver.samples.statistical.t.TTestCIBatch.class - [JAR]

├─ org.chocosolver.samples.statistical.t.TwoSampleTTest.class - [JAR]

org.chocosolver.samples.statistical.modelfit.nonlinear.poisson

├─ org.chocosolver.samples.statistical.modelfit.nonlinear.poisson.NonlinearModelFitPoisson.class - [JAR]

├─ org.chocosolver.samples.statistical.modelfit.nonlinear.poisson.NonlinearModelFitPoissonCIBatch.class - [JAR]

org.chocosolver.solver.constraints

├─ org.chocosolver.solver.constraints.SyatConstraintFactory.class - [JAR]

umontreal.iro.lecuyer.randvarmulti

├─ umontreal.iro.lecuyer.randvarmulti.MultinomialGen.class - [JAR]

org.chocosolver.samples.statistical.hotelling.multinomial

├─ org.chocosolver.samples.statistical.hotelling.multinomial.MultinomialCIChiSquare.class - [JAR]

├─ org.chocosolver.samples.statistical.hotelling.multinomial.MultinomialCIChiSquareOpt.class - [JAR]

├─ org.chocosolver.samples.statistical.hotelling.multinomial.MultinomialCIGoodman.class - [JAR]

org.chocosolver.samples.statistical.hotelling.multinormal

├─ org.chocosolver.samples.statistical.hotelling.multinormal.Hotelling.class - [JAR]

├─ org.chocosolver.samples.statistical.hotelling.multinormal.HotellingConfidenceRegion.class - [JAR]

org.chocosolver.samples.statistical.modelfit.timeseries

├─ org.chocosolver.samples.statistical.modelfit.timeseries.AR1TimeSeriesFit.class - [JAR]

├─ org.chocosolver.samples.statistical.modelfit.timeseries.AR1TimeSeriesFitCI.class - [JAR]

├─ org.chocosolver.samples.statistical.modelfit.timeseries.TwoAR1TimeSeriesFit.class - [JAR]

org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.KolmogorovSmirnov.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.PropGreaterOrEqualXCStDist.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.PropGreaterOrEqualX_DStDist.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.PropGreaterOrEqualX_YStDist.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.PropLessOrEqualXCStDist.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.PropLessOrEqualX_DStDist.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.PropNotEqualXCStDist.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.PropNotEqualX_DStDist.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.PropNotEqualX_YStDist.class - [JAR]

org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.distributions

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.distributions.DistributionVar.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.distributions.ExponentialDistVar.class - [JAR]

├─ org.chocosolver.solver.constraints.statistical.kolmogorovsmirnov.distributions.UniformDistVar.class - [JAR]

umontreal.iro.lecuyer.probdist

├─ umontreal.iro.lecuyer.probdist.EmpiricalDist.class - [JAR]

org.chocosolver.solver.constraints.statistical.fisherratio

├─ org.chocosolver.solver.constraints.statistical.fisherratio.FisherRatioStatistic.class - [JAR]

Advertisement