jar

nz.ac.waikato.cms.weka : paceRegression

Maven & Gradle

Apr 26, 2012

paceRegression · Class for building pace regression linear models and using them for prediction. Under regularity conditions, pace regression is provably optimal when the number of coefficients tends to infinity. It consists of a group of estimators that are either overall optimal or optimal under certain conditions. The current work of the pace regression theory, and therefore also this implementation, do not handle: - missing values - non-binary nominal attributes - the case that n - k is small where n is the number of instances and k is the number of coefficients (the threshold used in this implmentation is 20) For more information see: Wang, Y (2000). A new approach to fitting linear models in high dimensional spaces. Hamilton, New Zealand. Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning, Sydney, Australia, 650-657, 2002.

Table Of Contents

Latest Version

Download nz.ac.waikato.cms.weka : paceRegression JAR file - Latest Versions:

All Versions

Download nz.ac.waikato.cms.weka : paceRegression JAR file - All Versions:

Version Vulnerabilities Size Updated
1.0.x

View Java Class Source Code in JAR file

  1. Download JD-GUI to open JAR file and explore Java source code file (.class .java)
  2. Click menu "File → Open File..." or just drag-and-drop the JAR file in the JD-GUI window paceRegression-1.0.2.jar file.
    Once you open a JAR file, all the java classes in the JAR file will be displayed.

weka.classifiers.functions

├─ weka.classifiers.functions.PaceRegression.class - [JAR]

weka.classifiers.functions.pace

├─ weka.classifiers.functions.pace.ChisqMixture.class - [JAR]

├─ weka.classifiers.functions.pace.DiscreteFunction.class - [JAR]

├─ weka.classifiers.functions.pace.MixtureDistribution.class - [JAR]

├─ weka.classifiers.functions.pace.NormalMixture.class - [JAR]

├─ weka.classifiers.functions.pace.PaceMatrix.class - [JAR]

Advertisement