jar

org.kramerlab : autoencoder

Maven & Gradle

Dec 16, 2015
3 usages

Implementation of an autoencoder consisting of multiple restricted Boltzmann machines

Table Of Contents

Latest Version

Download org.kramerlab : autoencoder JAR file - Latest Versions:

All Versions

Download org.kramerlab : autoencoder JAR file - All Versions:

Version Vulnerabilities Size Updated
0.1

View Java Class Source Code in JAR file

  1. Download JD-GUI to open JAR file and explore Java source code file (.class .java)
  2. Click menu "File → Open File..." or just drag-and-drop the JAR file in the JD-GUI window autoencoder-0.1.jar file.
    Once you open a JAR file, all the java classes in the JAR file will be displayed.

org.kramerlab.autoencoder

├─ org.kramerlab.autoencoder.package.class - [JAR]

org.kramerlab.autoencoder.experiments

├─ org.kramerlab.autoencoder.experiments.ClassificationResult.class - [JAR]

├─ org.kramerlab.autoencoder.experiments.CrossValidation.class - [JAR]

├─ org.kramerlab.autoencoder.experiments.ErrorMeasures.class - [JAR]

├─ org.kramerlab.autoencoder.experiments.Metaparameters.class - [JAR]

├─ org.kramerlab.autoencoder.experiments.package.class - [JAR]

org.kramerlab.autoencoder.math.combinatorics

├─ org.kramerlab.autoencoder.math.combinatorics.Indexing.class - [JAR]

org.kramerlab.autoencoder.thresholding

├─ org.kramerlab.autoencoder.thresholding.package.class - [JAR]

org.kramerlab.autoencoder.math.random

├─ org.kramerlab.autoencoder.math.random.package.class - [JAR]

org.kramerlab.autoencoder.math.matrix

├─ org.kramerlab.autoencoder.math.matrix.ConstantIndexSelector.class - [JAR]

├─ org.kramerlab.autoencoder.math.matrix.EjmlTutorial.class - [JAR]

├─ org.kramerlab.autoencoder.math.matrix.IndexSelector.class - [JAR]

├─ org.kramerlab.autoencoder.math.matrix.Mat.class - [JAR]

├─ org.kramerlab.autoencoder.math.matrix.PerformanceComparison.class - [JAR]

├─ org.kramerlab.autoencoder.math.matrix.RangeSelector.class - [JAR]

├─ org.kramerlab.autoencoder.math.matrix.TwoEndRangeSelector.class - [JAR]

├─ org.kramerlab.autoencoder.math.matrix.package.class - [JAR]

org.kramerlab.autoencoder.visualization

├─ org.kramerlab.autoencoder.visualization.FilmSaver.class - [JAR]

├─ org.kramerlab.autoencoder.visualization.IntermediateTrainingResult.class - [JAR]

├─ org.kramerlab.autoencoder.visualization.Observer.class - [JAR]

├─ org.kramerlab.autoencoder.visualization.PartiallyTrainedAutoencoder.class - [JAR]

├─ org.kramerlab.autoencoder.visualization.PartiallyTrainedRbm.class - [JAR]

├─ org.kramerlab.autoencoder.visualization.PartiallyTrainedRbmStack.class - [JAR]

├─ org.kramerlab.autoencoder.visualization.TrainingObserver.class - [JAR]

├─ org.kramerlab.autoencoder.visualization.Visualizable.class - [JAR]

├─ org.kramerlab.autoencoder.visualization.VisualizableIntermediateResult.class - [JAR]

├─ org.kramerlab.autoencoder.visualization.VisualizationComponent.class - [JAR]

├─ org.kramerlab.autoencoder.visualization.package.class - [JAR]

org.kramerlab.autoencoder.math.optimization

├─ org.kramerlab.autoencoder.math.optimization.CG_Rasmussen2.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.CG_Rasmussen2_WithTermination.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.CG_Rasmussen3.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.CgComparison.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.ConjugateGradientDescent_HagerZhang.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.ConjugateGradientDescent_HagerZhangConfiguration.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.CrossEntropyErrorFunctionFactory.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.CubicInterpolationLineSearch.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.DifferentiableErrorFunctionFactory.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.DifferentiableFunction.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.EarlyStopping.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.GradientDescent.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.LimitNumberOfEvaluations.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.LimitNumberOfLineSearches.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.LimitNumberOfSteps.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.Minimizer.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.NonlinearConjugateGradientDescent.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.NonlinearConjugateGradientDescent_Rasmussen.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.PolakRibiere.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.ResultSelector.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.SlopeRatioInitialStep.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.SquareErrorFunctionFactory.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.TerminateNever.class - [JAR]

├─ org.kramerlab.autoencoder.math.optimization.TerminationCriterion.class - [JAR]

org.kramerlab.autoencoder.neuralnet

├─ org.kramerlab.autoencoder.neuralnet.BiasedUnitLayer.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.FullBipartiteConnection.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.Layer.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.LinearUnitLayer.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.MatrixParameterizedLayer.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.NeuralNet.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.NeuralNetLike.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.SigmoidUnitLayer.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.UnscaledSigmoidUnitLayer.class - [JAR]

org.kramerlab.autoencoder.math.polynomial

├─ org.kramerlab.autoencoder.math.polynomial.DiscreteRoots.class - [JAR]

├─ org.kramerlab.autoencoder.math.polynomial.RealLine.class - [JAR]

├─ org.kramerlab.autoencoder.math.polynomial.RootSet.class - [JAR]

├─ org.kramerlab.autoencoder.math.polynomial.package.class - [JAR]

org.kramerlab.autoencoder.math.structure

├─ org.kramerlab.autoencoder.math.structure.VectorSpace.class - [JAR]

org.kramerlab.autoencoder.wekacompatibility

├─ org.kramerlab.autoencoder.wekacompatibility.package.class - [JAR]

org.kramerlab.autoencoder.mnist

├─ org.kramerlab.autoencoder.mnist.MnistToMat.class - [JAR]

org.kramerlab.autoencoder.neuralnet.rbm

├─ org.kramerlab.autoencoder.neuralnet.rbm.BernoulliUnitLayer.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.CompetitiveRetryTrainingStrategy.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.ConstantConfigurationEarlyStoppingTrainingStrategy.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.ConstantConfigurationFixedEpochsTrainingStrategy.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.DefaultRbmTrainingConfiguration.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.GaussianUnitLayer.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.RandomRetryTrainingStrategy.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.Rbm.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.RbmLayer.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.RbmStack.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.RbmTrainingConfiguration.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.RbmTrainingStrategy.class - [JAR]

├─ org.kramerlab.autoencoder.neuralnet.rbm.TournamentTrainingStrategy.class - [JAR]

org.kramerlab.autoencoder.neuralnet.autoencoder

├─ org.kramerlab.autoencoder.neuralnet.autoencoder.Autoencoder.class - [JAR]

org.kramerlab.autoencoder.demo

├─ org.kramerlab.autoencoder.demo.ArffCompressionMain.class - [JAR]

├─ org.kramerlab.autoencoder.demo.ConfigurableCompressionMain.class - [JAR]

├─ org.kramerlab.autoencoder.demo.ConfigurableCompressionMain_Stream.class - [JAR]

├─ org.kramerlab.autoencoder.demo.ConfigurableCompressionMain_StreamAsSingle.class - [JAR]

Advertisement

Dependencies from Group

Nov 04, 2015
3 usages
5 stars
Dec 16, 2015
3 usages
Dec 16, 2015
2 stars

Discover Dependencies

Jun 14, 2023
5 usages
1 stars
Oct 25, 2018
5 usages
93 stars
Feb 12, 2022
7 usages
2 stars
Aug 03, 2016
2 usages
8 stars
Jun 29, 2016
2 usages
Feb 18, 2021
3 usages